Integers Practice Test - Final

Give the integer suggested by the statement.

1. a loss of $\$ 10$ \qquad
2. a surplus of $\$ 250$ \qquad
3. fifty dollars lost \qquad
4. 600 m above sea level \qquad
5. $15^{\circ} \mathrm{C}$ below zero. \qquad

Use the appropriate sign $(>=<)$ to make the statement true.

1. -7()-9
2. -6()-8
3. $\mathbf{0}()-\mathbf{3}$
4. $\mathbf{+ 8}() \mathbf{8}$

Put the following in order from least to greatest.

1. $+4,-8,-1,+6,-1$
2. $+3,-4,+1,-10,+5$

Add.

1. $(-6)+(-3)=$
2. $(-\mathbf{2})+(+\mathbf{3})=$
3. $(+1)+(-7)=$
4. $(+5)+(-5)=$
5. $(+12)+(-8)=$
6. $(+6)+(-9)=$

Subtract.

1. $(+3)-(+7)=$
2. $(\mathbf{0})-(-7)=$
3. $(\mathbf{0})-(+\mathbf{6})=$
4. $(-4)-(-5)=$
5. $(+2)-(-3)=$
6. $(-14)-(+3)=$

Evaluate.

1. $(-4)+(-6)-(-12)=$
2. $(+\mathbf{2})+(-7)-(+\mathbf{1})=$
3. $(+3)-(+5)-(-7)=$
4. $(-14)-(-9)+(+6)-(-5)=$
5. $(+2)+(-6)+(-4)-(-3)+(+4)=$
6. $(-3)+(-2)+(+4)-(-7)+(+4)=$

Integers Practice Test - Final

Multiply.

1. $(-6) \times(-3)=$
2. $(-\mathbf{2}) \times(+\mathbf{3})=$
3. $(+1) \times(-7)=$
4. $(+5) \times(-5)=$
5. $(+\mathbf{1 2})+(+\mathbf{8})=$
6. $(-3)+(-9)=$

Divide.

1. $(-6) \div(-3)=$
2. $(-12) \div(+3)=$
3. $(+\mathbf{1 0}) \div(-\mathbf{5})=$
4. $(+\mathbf{2 5}) \div(+\mathbf{5})=$
5. $(+24) \div(-8)=$
6. $(-27) \div(-9)=$

Find a pair of numbers that satisfies the following conditions.

1. product of $-6-$ a sum of +1
2. product of $+4-$ a sum of -4
3. product of $-10-$ a sum of -3
4. product of $+16-$ a sum of +8

Evaluate using order of operations (BEDMAS).

1. $[(+2)+(+5)] \times-3=$
2. $(+\mathbf{2 0}) \div[(+\mathbf{5})+(-\mathbf{1})]=$
3. $(+3) \times(+2)+(-6)=$
4. $[(+\mathbf{2})+(+\mathbf{8})] \times[(-\mathbf{3})-(+\mathbf{1})]=$
5. $(+\mathbf{1})+(-\mathbf{3}) \times(-\mathbf{3})-(+\mathbf{8})=$
6. $[(+20) \div(+10)]^{2}=$
7. $[(+6)-(+9)]^{2}=$
8. $[(-\mathbf{8}) \div(+\mathbf{8})]^{\mathbf{3}}-(+\mathbf{3})=$
